skip to main content


Search for: All records

Creators/Authors contains: "Budhiraja, Ashish Kumar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study two multi-robot assignment problems for multi-target tracking. We consider distributed approaches in order to deal with limited sensing and communication ranges. We seek to simultaneously assign trajectories and targets to the robots. Our focus is on \emph{local} algorithms that achieve performance close to the optimal algorithms with limited communication. We show how to use a local algorithm that guarantees a bounded approximate solution within $\mathcal{O}(h\log{1/\epsilon})$ communication rounds. We compare with a greedy approach that achieves a $2$--approximation in as many rounds as the number of robots. Simulation results show that the local algorithm is an effective solution to the assignment problem. 
    more » « less
  2. Abstract

    We study the problem of planning a tour for an energy‐limited Unmanned Aerial Vehicle (UAV) to visit a set of sites in the least amount of time. We envision scenarios where the UAV can be recharged at a site or along an edge either by landing on stationary recharging stations or on Unmanned Ground Vehicles (UGVs) acting as mobile recharging stations. This leads to a new variant of the Traveling Salesperson Problem (TSP) with mobile recharging stations. We present an algorithm that finds not only the order in which to visit the sites but also when and where to land on the charging stations to recharge. Our algorithm plans tours for the UGVs as well as determines the best locations to place stationary charging stations. We study three variants for charging: Multiple stationary charging stations, single mobile charging station, and multiple mobile charging stations. As the problems we study are nondeterministic polynomial time (NP)‐Hard, we present a practical solution using Generalized TSP that finds the optimal solution that minimizes the total time, subject to the discretization of battery levels. If the UGVs are slower than the UAVs, then the algorithm also finds the minimum number of UGVs required to support the UAV mission such that the UAV is not required to wait for the UGV. Our simulation results show that the running time is acceptable for reasonably sized instances in practice. We evaluate the performance of our algorithm through simulations and proof‐of‐concept field experiments with a fully autonomous system of one UAV and UGV.

     
    more » « less